3.321 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=152 \[ \frac {(2 A+3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {b \cos (c+d x)}} \]

[Out]

1/3*A*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(b*cos(d*x+c))^(1/2)+1/2*B*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(1
/2)+1/3*(2*A+3*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(b*cos(d*x+c))^(1/2)+1/2*B*arctanh(sin(d*x+c))*cos(d*x+c)^(1/2
)/d/(b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {18, 3021, 2748, 3768, 3770, 3767, 8} \[ \frac {(2 A+3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[b*Cos[c + d*x]]),x]

[Out]

(B*ArcTanh[Sin[c + d*x]]*Sqrt[Cos[c + d*x]])/(2*d*Sqrt[b*Cos[c + d*x]]) + (A*Sin[c + d*x])/(3*d*Cos[c + d*x]^(
5/2)*Sqrt[b*Cos[c + d*x]]) + (B*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)*Sqrt[b*Cos[c + d*x]]) + ((2*A + 3*C)*Sin
[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Cos[c + d*x]])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 18

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m - 1/2)*b^(n + 1/2)*Sqrt[a*v])/Sqrt[b*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx &=\frac {\sqrt {\cos (c+d x)} \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx}{\sqrt {b \cos (c+d x)}}\\ &=\frac {A \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \int (3 B+(2 A+3 C) \cos (c+d x)) \sec ^3(c+d x) \, dx}{3 \sqrt {b \cos (c+d x)}}\\ &=\frac {A \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{\sqrt {b \cos (c+d x)}}+\frac {\left ((2 A+3 C) \sqrt {\cos (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{3 \sqrt {b \cos (c+d x)}}\\ &=\frac {A \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 \sqrt {b \cos (c+d x)}}-\frac {\left ((2 A+3 C) \sqrt {\cos (c+d x)}\right ) \operatorname {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d \sqrt {b \cos (c+d x)}}\\ &=\frac {B \tanh ^{-1}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{3 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {(2 A+3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 87, normalized size = 0.57 \[ \frac {\tan (c+d x) ((2 A+3 C) \cos (2 (c+d x))+4 A+3 B \cos (c+d x)+3 C)+3 B \cos ^2(c+d x) \tanh ^{-1}(\sin (c+d x))}{6 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[b*Cos[c + d*x]]),x]

[Out]

(3*B*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (4*A + 3*C + 3*B*Cos[c + d*x] + (2*A + 3*C)*Cos[2*(c + d*x)])*Tan[
c + d*x])/(6*d*Cos[c + d*x]^(3/2)*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 271, normalized size = 1.78 \[ \left [\frac {3 \, B \sqrt {b} \cos \left (d x + c\right )^{4} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (2 \, {\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{12 \, b d \cos \left (d x + c\right )^{4}}, -\frac {3 \, B \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{4} - {\left (2 \, {\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{6 \, b d \cos \left (d x + c\right )^{4}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/12*(3*B*sqrt(b)*cos(d*x + c)^4*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*s
in(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(2*(2*A + 3*C)*cos(d*x + c)^2 + 3*B*cos(d*x + c) + 2*A)*sq
rt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(b*d*cos(d*x + c)^4), -1/6*(3*B*sqrt(-b)*arctan(sqrt(b*cos
(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^4 - (2*(2*A + 3*C)*cos(d*x + c)^2 + 3*B*
cos(d*x + c) + 2*A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(b*d*cos(d*x + c)^4)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right )} \cos \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c))*cos(d*x + c)^(7/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.38, size = 156, normalized size = 1.03 \[ \frac {3 B \left (\cos ^{3}\left (d x +c \right )\right ) \ln \left (\frac {1-\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-3 B \left (\cos ^{3}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+4 A \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+6 C \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+3 B \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 A \sin \left (d x +c \right )}{6 d \sqrt {b \cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(b*cos(d*x+c))^(1/2),x)

[Out]

1/6/d*(3*B*cos(d*x+c)^3*ln((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))-3*B*cos(d*x+c)^3*ln(-(-1+cos(d*x+c)+sin(d*x+c
))/sin(d*x+c))+4*A*cos(d*x+c)^2*sin(d*x+c)+6*C*sin(d*x+c)*cos(d*x+c)^2+3*B*cos(d*x+c)*sin(d*x+c)+2*A*sin(d*x+c
))/(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(5/2)

________________________________________________________________________________________

maxima [B]  time = 0.74, size = 1014, normalized size = 6.67 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/12*(24*C*sqrt(b)*sin(2*d*x + 2*c)/(b*cos(2*d*x + 2*c)^2 + b*sin(2*d*x + 2*c)^2 + 2*b*cos(2*d*x + 2*c) + b) +
 16*((3*cos(2*d*x + 2*c) + 1)*sin(6*d*x + 6*c) + 3*(3*cos(2*d*x + 2*c) + 1)*sin(4*d*x + 4*c) - 3*cos(6*d*x + 6
*c)*sin(2*d*x + 2*c) - 9*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*A/((2*(3*cos(4*d*x + 4*c) + 3*cos(2*d*x + 2*c) + 1
)*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 6*(3*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 9*cos(4*d*x + 4*c)^2 +
 9*cos(2*d*x + 2*c)^2 + 6*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 9*sin(
4*d*x + 4*c)^2 + 18*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sin(2*d*x + 2*c)^2 + 6*cos(2*d*x + 2*c) + 1)*sqrt(b)
) - 3*(4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(sin
(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x + 2
*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c
)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x +
2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c)
+ 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x +
 2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*B/((2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(
4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x
 + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*sqrt(b)))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(b*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2)/(b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________